MATH 319/320, SPRING 2020 PRACTICE MIDTERM 1

FEBRUARY 27

Each problem is worth 10 points.

Problem 1. Prove by induction

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + \dots + (-1)^{n+1}n^{2} = (-1)^{n+1}\frac{n(n+1)}{2}$$

Solution. Base case (n = 1): $1^2 = 1 = (-1)^2 \frac{1 \cdot 2}{2}$. Inductive step: Assume for some $n \ge 1$ that $1^2 - 2^2 + \dots + (-1)^{n+1} n^2 = (-1)^{n+1} \frac{n(n+1)}{2}$. Applying the inductive assumption,

$$1^{2} - 2^{2} + \dots + (-1)^{n+1}n^{2} + (-1)^{n+2}(n+1)^{2}$$

= $(-1)^{n+1}\frac{n(n+1)}{2} + (-1)^{n+2}(n+1)^{2}$
= $(-1)^{n+2}\left[(n+1)^{2} - \frac{n(n+1)}{2}\right]$
= $(-1)^{n+2}\frac{(n+1)(n+2)}{2}.$

This proves the claim by induction.

Problem 2. Let (x_n) be an increasing sequence. Prove that (x_n) converges if and only if it is bounded.

Solution. First suppose that (x_n) is convergent with limit x. Choose N such that n > N implies $|x_n - x| < 1$. Then $|x_n| < |x| + 1$. It follows that for all $n, |x_n| \le \max(|x_1|, ..., |x_N|, |x| + 1)$, and hence (x_n) is bounded.

Now suppose that (x_n) is bounded. The set $\{x_n\}$ is bounded and nonempty. Let $\alpha = \sup\{x_n\}$. Given $\epsilon > 0$, choose N such that $\alpha - \epsilon < x_N \leq \alpha$. For n > N,

 $\alpha - \epsilon < x_N \le x_n \le \alpha$

and hence $|\alpha - x_n| < \epsilon$. Thus $\lim x_n = \alpha$.

FEBRUARY 27

Problem 3. Prove that for all positive real numbers x > 0 there is an integer n such that $0 < \frac{1}{n} < x$.

Solution. If there exists a natural number $n > \frac{1}{x}$, then $0 < \frac{1}{n} < x$, so it suffices to prove that the natural numbers do not have an upper bound. Suppose to the contrary that $\frac{1}{x}$ is an upper bound for \mathbb{N} , and let α be a least upper bound. Then $\alpha - 1$ is not an upper bound, so there exists natural number $m > \alpha - 1$. It follows that $m + 1 > \alpha$, contradiction.

Problem 4. State carefully the definition of the supremum of a bounded, non-empty set S of real numbers. Prove that $\sup S = -\inf(-S)$, where $-S = \{-s : s \in S\}$.

Solution. The supremum of a bounded non-empty set is an upper bound for the set such that any other upper bound is at least as large.

Let $\alpha = \sup S$. Then α is an upper bound, so that, for any $s \in S$, $s \leq \alpha$. It follows that $-s \geq -\alpha$, so $-\alpha$ is a lower bound for -S. Since α is the least upper bound, for any $\epsilon > 0$, $\alpha - \epsilon$ is not an upper bound, so that there exists $s \in S$ with $s > \alpha - \epsilon$. Then $-\alpha + \epsilon > -s$ so $-\alpha + \epsilon$ is not a lower bound for -S. It follows that $-\alpha$ is the greatest lower bound for -S, as claimed.

FEBRUARY 27

Problem 5. Show that there exists a positive real number x such that $x^3 = 2$. Prove that x is irrational.

Solution. Let $S = \{s \in \mathbb{R} : s > 0, s^3 < 2\}$. Then $1 \in S$ so S is non-empty. If s > 2 then $s^3 \ge 2^3 = 8$, $s \notin S$. Thus S is bounded above. Let $\alpha = \sup S$.

First, suppose that $\alpha^3 > 2$. In particular, $\alpha > 1$. Let $0 < \epsilon < 1$ be a small number. Then

$$(\alpha - \epsilon)^3 = \alpha^3 - 3\alpha^2 \epsilon + 3\alpha \epsilon^2 - \epsilon^3$$

> $\alpha^3 - 3\alpha^2 \epsilon - \epsilon^3$
> $\alpha^3 - (3\alpha^2 + 1)\epsilon.$

Set $\epsilon = \min\left(\frac{1}{2}, \frac{\alpha^3 - 2}{3\alpha^2 + 1}\right)$. Then $\alpha - \epsilon > 0$ and $(\alpha - \epsilon)^3 > 2$, so $\alpha - \epsilon$ is still an upper bound, and α is not a least upper bound.

Suppose instead that $\alpha^3 < 2$. Let $0 < \epsilon < 1$ and note

$$(\alpha + \epsilon)^3 = \alpha^3 + 3\alpha^2\epsilon + 3\alpha\epsilon^2 + \epsilon^3 < \alpha^3 + (3\alpha^2 + 3\alpha + 1)\epsilon.$$

Choose $\epsilon = \min\left(\frac{1}{2}, \frac{2-\alpha^3}{3\alpha^2+3\alpha+1}\right)$. Then $(\alpha + \epsilon)^3 < 2$, so $\alpha + \epsilon \in S$, which contradicts α is an upper bound.

By trichotomy, the only possibility left is $\alpha^3 = 2$.

To check α irrational, suppose instead $\alpha = \frac{p}{q}$ with $p, q \in \mathbb{Z}, q \neq 0$, and having greatest common divisor 1. Then $p^3 = 2q^3$ implies 2 divides p, so p = 2p' and $p^3 = 8(p')^3$. Then $4(p')^3 = q^3$ implies 2 divides q, a contradiction. Thus α is irrational. FEBRUARY 27