MATH 319/320, SPRING 2020 PRACTICE MIDTERM 1

FEBRUARY 27

Each problem is worth 10 points.

Problem 1. Prove by induction

$$
1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n+1} n^{2}=(-1)^{n+1} \frac{n(n+1)}{2}
$$

Solution. Base case $(n=1): 1^{2}=1=(-1)^{2} \frac{1 \cdot 2}{2}$.
Inductive step: Assume for some $n \geq 1$ that $1^{2}-2^{2}+\cdots+(-1)^{n+1} n^{2}=$ $(-1)^{n+1} \frac{n(n+1)}{2}$. Applying the inductive assumption,

$$
\begin{aligned}
& 1^{2}-2^{2}+\cdots+(-1)^{n+1} n^{2}+(-1)^{n+2}(n+1)^{2} \\
& =(-1)^{n+1} \frac{n(n+1)}{2}+(-1)^{n+2}(n+1)^{2} \\
& =(-1)^{n+2}\left[(n+1)^{2}-\frac{n(n+1)}{2}\right] \\
& =(-1)^{n+2} \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

This proves the claim by induction.

Problem 2. Let $\left(x_{n}\right)$ be an increasing sequence. Prove that $\left(x_{n}\right)$ converges if and only if it is bounded.

Solution. First suppose that $\left(x_{n}\right)$ is convergent with limit x. Choose N such that $n>N$ implies $\left|x_{n}-x\right|<1$. Then $\left|x_{n}\right|<|x|+1$. It follows that for all $n,\left|x_{n}\right| \leq \max \left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|,|x|+1\right)$, and hence $\left(x_{n}\right)$ is bounded.
Now suppose that $\left(x_{n}\right)$ is bounded. The set $\left\{x_{n}\right\}$ is bounded and nonempty. Let $\alpha=\sup \left\{x_{n}\right\}$. Given $\epsilon>0$, choose N such that $\alpha-\epsilon<x_{N} \leq \alpha$. For $n>N$,

$$
\alpha-\epsilon<x_{N} \leq x_{n} \leq \alpha
$$

and hence $\left|\alpha-x_{n}\right|<\epsilon$. Thus $\lim x_{n}=\alpha$.

Problem 3. Prove that for all positive real numbers $x>0$ there is an integer n such that $0<\frac{1}{n}<x$.

Solution. If there exists a natural number $n>\frac{1}{x}$, then $0<\frac{1}{n}<x$, so it suffices to prove that the natural numbers do not have an upper bound. Suppose to the contrary that $\frac{1}{x}$ is an upper bound for \mathbb{N}, and let α be a least upper bound. Then $\alpha-1$ is not an upper bound, so there exists natural number $m>\alpha-1$. It follows that $m+1>\alpha$, contradiction.

Problem 4. State carefully the definition of the supremum of a bounded, non-empty set S of real numbers. Prove that $\sup S=-\inf (-S)$, where $-S=\{-s: s \in S\}$.

Solution. The supremum of a bounded non-empty set is an upper bound for the set such that any other upper bound is at least as large.
Let $\alpha=\sup S$. Then α is an upper bound, so that, for any $s \in S, s \leq \alpha$. It follows that $-s \geq-\alpha$, so $-\alpha$ is a lower bound for $-S$. Since α is the least upper bound, for any $\epsilon>0, \alpha-\epsilon$ is not an upper bound, so that there exists $s \in S$ with $s>\alpha-\epsilon$. Then $-\alpha+\epsilon>-s$ so $-\alpha+\epsilon$ is not a lower bound for $-S$. It follows that $-\alpha$ is the greatest lower bound for $-S$, as claimed.

Problem 5. Show that there exists a positive real number x such that $x^{3}=2$. Prove that x is irrational.

Solution. Let $S=\left\{s \in \mathbb{R}: s>0, s^{3}<2\right\}$. Then $1 \in S$ so S is non-empty. If $s>2$ then $s^{3} \geq 2^{3}=8, s \notin S$. Thus S is bounded above. Let $\alpha=\sup S$.

First, suppose that $\alpha^{3}>2$. In particular, $\alpha>1$. Let $0<\epsilon<1$ be a small number. Then

$$
\begin{aligned}
(\alpha-\epsilon)^{3} & =\alpha^{3}-3 \alpha^{2} \epsilon+3 \alpha \epsilon^{2}-\epsilon^{3} \\
& >\alpha^{3}-3 \alpha^{2} \epsilon-\epsilon^{3} \\
& \geq \alpha^{3}-\left(3 \alpha^{2}+1\right) \epsilon .
\end{aligned}
$$

Set $\epsilon=\min \left(\frac{1}{2}, \frac{\alpha^{3}-2}{3 \alpha^{2}+1}\right)$. Then $\alpha-\epsilon>0$ and $(\alpha-\epsilon)^{3}>2$, so $\alpha-\epsilon$ is still an upper bound, and α is not a least upper bound.
Suppose instead that $\alpha^{3}<2$. Let $0<\epsilon<1$ and note

$$
(\alpha+\epsilon)^{3}=\alpha^{3}+3 \alpha^{2} \epsilon+3 \alpha \epsilon^{2}+\epsilon^{3}<\alpha^{3}+\left(3 \alpha^{2}+3 \alpha+1\right) \epsilon .
$$

Choose $\epsilon=\min \left(\frac{1}{2}, \frac{2-\alpha^{3}}{3 \alpha^{2}+3 \alpha+1}\right)$. Then $(\alpha+\epsilon)^{3}<2$, so $\alpha+\epsilon \in S$, which contradicts α is an upper bound.
By trichotomy, the only possibility left is $\alpha^{3}=2$.
To check α irrational, suppose instead $\alpha=\frac{p}{q}$ with $p, q \in \mathbb{Z}, q \neq 0$, and having greatest common divisor 1 . Then $p^{3}=2 q^{3}$ implies 2 divides p, so $p=2 p^{\prime}$ and $p^{3}=8\left(p^{\prime}\right)^{3}$. Then $4\left(p^{\prime}\right)^{3}=q^{3}$ implies 2 divides q, a contradiction. Thus α is irrational.

