MAT?200, Lecture 1
Midterm I. October 13, 2010

This is a closed notes/ closed book/ electronics off exam.
Please write a detailed proof/explanation for every prob-
lem. Answers without an explanation will get very little
partial credit.

Please write legibly and cross out anything that you do
not want the grader to read.

Notation: R — the set of real numbers, Z — the set of integer num-
bers; R, — positive real numbers, Z, — positive integer (i.e. natural)
numbers.

You can use the quantifiers V (meaning “for all” or “for any”), and
3 (meaning “there exists” or “there is”), but please do not use X or A.

You can use all the usual properties of real and integer numbers: the
properties of addition, multiplication, inequalities; that the sum (or
product) of even numbers is even, etc.

Each problem is worth 10 points.
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Problem 1. a) Write the negation of the following statement, first in
plain English, and then using quantifiers and formulas, with no words.

For any element a of the set A and any element b of the set B, a is
less than b.
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b) Write a statement logically equivalent to the one below, but using
no negatives, first in plain English, and then using quantifiers and
formulas, with no words.

There is no positive real number x such that for any natural number
n, x is not greater than 1/n.
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Problem 2. Let the sequence {ax} be defined by a1 = 2, ap; =
2ar — 1. Guess a general formula for a; and prove it using induction.
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Problem 3. a) Prove that for any sets A, B,C, and D, if C C ANB
and AUBC D,then A— BCD-C.

You can use Venn diagrams to illustrate your proof, but Venn di-
agrams alone will not be considered a valid proof: you can use truth
tables, algebra of sets, etc. Hint: think of D as the “universal” set.
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Problem 4. For each of the following statements determine whether
it is truc or false, and justify your answer.
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Talce x-.sl;a” haM‘ wember ; LR
jrw Han o 2,7%‘ to |

b)dreR,, VyeR,, <y True False

For Qr\; X & FR_‘, ;-:352_' Uielates
EWixs  sdadement,

c)VreR, JyeR, zy <=z True False

For an < wQ Can MQJ:\ So
)
x;:x £ x

d)JzeR, VyeR, ay <=z True False

We can talao X =0, so that
}or-a% y, we have :c;:o < xXx=0



Problem 5. For any pair of integers n and m prove that if n? +n?+m
is even, then m is even. LQA- A = ntynZPxn — 1+ evan.
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Problem 6. Let f : A — B be a bijective function, and let g : B — A
be a surjective function. For each of the two compositions f o g and
g o f, determine the domain and codomain, and whether the function
is necessarily injective/surjective/bijective. Justify your answers by
proofs or counterexamples.
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