MAT200, Lecture 1 - Fall 2010

Midterm II practice problems

The midterm will be closed book, but the basic definitions, all axioms, and the main theorems would be given to you.
Problem 1. Let $\triangle A B C$ be a triangle. Prove that $m \angle A=m \angle B=$ $m \angle C$ if and only if $|A B|=|B C|=|C A|$.
Problem 2. Use exterior angle inequality to prove that if l, m, n are distinct lines such that $l \perp m, l \perp n$, then $n \| m$ (for this problem you are only allowed to use chapters 1-5; in particular you are not allowed to use the sum of angles of a triangle).
Problem 3. Let A, B, C, D be distinct points such that $|A B|=|B C|=$ $|C D|=|A D|$ and such that $M=\overline{A C} \cap \overline{B D}$. Show that $\triangle A B C=$ $\triangle A D C, \triangle A M B=\triangle A M D$, and that $\overleftrightarrow{A C} \perp \overleftrightarrow{B D}$.

Problem 4. Let A and B be distinct points. Prove that the set of points C such that $|A C|=|B C|$ is a line. Hint: First show that there is a unique line ℓ through the mid-point of $\overline{A B}$ which is perpendicular to $\overleftrightarrow{A B}$. Then show that this line is what we want
Problem 5. Suppose that our plane contained only four points A, B, C, D any two a distance of one apart, and the six lines were $\overleftrightarrow{A B}, \overleftrightarrow{A C}$, $\overleftrightarrow{A D}, \overleftrightarrow{B D}, \overleftrightarrow{B C}, \overleftrightarrow{C D}$. Which of the axioms would this satisfy and which would it contradict? Explain why.
Problem 6. Let A, B, C be non-collinear points. Let D be a point of $\overline{B C}$. Without using the Crossbar theorem, prove that every point of the ray $\overrightarrow{A D}$ is in the interior of $\angle B A C$.

