Spring 2017 MAT 536, Complex Analysis Instructor: Samuel Grushevsky

Homework #11, due in class Wed April 26

Recall that $\Omega \subsetneq \mathbb{C}$ is open connected, $\mathcal{O}(\Omega)$ denotes the set of holomorphic functions on Ω , $\mathcal{H}(\Omega)$ denotes the set of harmonic functions on Ω , and $\mathcal{SH}(\Omega)$ denotes the set of subharmonic functions on Ω ; $\Delta_r(z)$ denotes the open disk around z of radius r.

Problem 1. Prove that any $u \in S\mathcal{H}(\Delta_{1+\epsilon}(0))$ is integrable on Δ (start by proving that upper semicontinuous functions not taking value $-\infty$ are integrable, then supply the details of the proof given in class).

Problem 2. Suppose $\mu \in C^0(\partial \Delta)$ is a continuous real function on the unit circle. Let then

$$\phi(z) := \int_{\partial \Delta} \mu(w) \ln |z - w| |dw|$$

be the so-called logarithmic potential. Prove that $\phi \in \mathcal{H}(\mathbb{C} \setminus \overline{\Delta})$, and prove that if $\mu \equiv 1$, then $\phi|_{\Delta}$ is constant.

Problem 3. Suppose that both f(z) and zf(z) are complex-valued harmonic functions (i.e. $\Delta f \equiv \Delta(zf) \equiv 0$). Prove that f is holomorphic.

Problem 4. Suppose $u_n \in S\mathcal{H}(\Delta)$ is a sequence of functions such that $\sup_{z \in K, n \in \mathbb{N}} u_n(z) < +\infty$ for any compact $K \subset \Omega$. Prove that $\sum 2^{-n} u_n$ is subharmonic. (*Hint: upper semi-continuity follows from Fatou's lemma*)

Problem 5. Let $\{z_n\} \subset \Delta$ be a countable dense set. Show that

$$u(z) := \sum 2^{-n} \ln |z - z_n|$$

is a subharmonic function on Δ that is discontinuous almost everywhere on Δ .