Spring 2017 MAT 536, Complex Analysis
 Instructor: Samuel Grushevsky
 Homework \#2, due in class Wed February 8

Problem 1. (a) State and prove the chain rule for differentiation of smooth functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(b) Write the result of (a) in terms of coordinates z and \bar{z} instead of x and y.
(c) State and prove the chain rule for differentiation of holomorphic functions.

Problem 2. Prove that the function

$$
f(z):= \begin{cases}\bar{z}^{2} / z, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

satisfies the Cauchy-Riemann equations at the origin, but is not differentiable there.

Problem 3. Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ be the (open) upper halfplane. Does there exist a holomorphic non-constant function $f: \mathbb{C} \rightarrow$ \mathbb{H} ?

Problem 4. Find a biholomorphism $\Delta \rightarrow \mathbb{H}$, where $\Delta:=\{z \in \mathbb{C}:$ $|z|<1\}$ is the open unit disk.
Problem 5. For any $n \in \mathbb{N}$ prove that $f(z)=z^{1 / n}$, suitably defined, is an analytic function $f: \mathbb{H} \rightarrow \mathbb{C}$, and compute all of its derivatives at $z=i$.

Problem 6. Recall that (we have not proven this, but still) the group of biholomorphisms of \mathbb{H} is equal to the fractional linear transformations $\mathrm{PSL}_{2}(\mathbb{R})$. Construct a Riemannian metric (that is, something of the form $f(x, y) d x d y$, please read up on a proper definition) on \mathbb{H} that is invariant under the action of $\mathrm{PSL}_{2}(\mathbb{R})$, and prove such a metric is unique up to scaling.
(Optional: if you know what curvature is, compute the curvature of this metric. Could you have known the answer beforehand, without a computation?)

