Spring 2017 MAT 536, Complex Analysis

Instructor: Samuel Grushevsky

Homework \#4, due in class Wed February 22

Problem 1. Suppose $f, g: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic functions. Prove that if for any $z \in \mathbb{C}$ the inequality $|f(z)| \leq|g(z)|$ holds, then there exists a constant $c \in \mathbb{C}$ such that $f(z)=c g(z)$ for any $z \in \mathbb{C}$.

Notation. Let $\Delta=\{|\zeta|<1\} \subset \mathbb{C}$ be the open unit disk, let $\gamma=$ $\{|\zeta|=1\}=\partial \Delta$ be the unit circle, and let $\Delta^{\prime}:=\mathbb{C} \backslash(\Delta \sqcup \gamma)=\{|\zeta|>1\}$ be the complement of the closed unit disk.

Problem 2. Suppose $f: \Delta \rightarrow \mathbb{C}$ is a holomorphic function which has a pole at $z=1$. Prove that the power series expansion for f centered at 0 does not converge at any point $z \in \gamma$.
Problem 3. Let $f: \gamma \rightarrow \mathbb{C}$ be a continuous function. For $z \in \mathbb{C} \backslash \gamma$ define the function $F(z)$ by the Cauchy integral formula, that is let

$$
F(z):=\frac{1}{2 \pi i} \int_{\zeta \in \gamma} \frac{f(\zeta) d \zeta}{\zeta-z} .
$$

Prove that $F(z)$ is a holomorphic function on $\mathbb{C} \backslash \gamma$, and prove that $\lim _{z \rightarrow \infty} F(z)=0$.
Problem 4 (20 points). Continuing in the setup of the previous problem, and assuming that $f \in C^{1}(\gamma)$ (you may assume smooth if you wish),
(a) Prove that for any $\zeta_{0} \in \gamma$ there exist limits

$$
F^{-}\left(\zeta_{0}\right):=\lim _{z \in \Delta, z \rightarrow \zeta_{0}} F(z) \quad \text { and } \quad F^{+}\left(\zeta_{0}\right):=\lim _{z \in \Delta^{\prime}, z \rightarrow \zeta_{0}} F(z)
$$

(b) Prove the Sokhotski-Plemelj formula, i.e. prove that the equality

$$
F^{+}\left(\zeta_{0}\right)-F^{-}\left(\zeta_{0}\right)= \pm f\left(\zeta_{0}\right)
$$

holds for any $\zeta_{0} \in \gamma$ (the sign depends on your convention of how γ is oriented).

Hint: Express F as

$$
F(z)=\frac{1}{2 \pi i} \int_{\zeta \in \gamma} \frac{f(\zeta)-f\left(\zeta_{0}\right)}{\zeta-z} d \zeta+\frac{f\left(\zeta_{0}\right)}{2 \pi i} \int_{\zeta \in \gamma} \frac{d \zeta}{\zeta-z}
$$

