Spring 2017 MAT 536, Complex Analysis Instructor: Samuel Grushevsky Homework #4, due in class Wed February 22

Problem 1. Suppose $f, g : \mathbb{C} \to \mathbb{C}$ are holomorphic functions. Prove that if for any $z \in \mathbb{C}$ the inequality $|f(z)| \leq |g(z)|$ holds, then there exists a constant $c \in \mathbb{C}$ such that f(z) = cg(z) for any $z \in \mathbb{C}$.

Notation. Let $\Delta = \{|\zeta| < 1\} \subset \mathbb{C}$ be the open unit disk, let $\gamma = \{|\zeta| = 1\} = \partial \Delta$ be the unit circle, and let $\Delta' := \mathbb{C} \setminus (\Delta \sqcup \gamma) = \{|\zeta| > 1\}$ be the complement of the closed unit disk.

Problem 2. Suppose $f : \Delta \to \mathbb{C}$ is a holomorphic function which has a pole at z = 1. Prove that the power series expansion for f centered at 0 does not converge at any point $z \in \gamma$.

Problem 3. Let $f : \gamma \to \mathbb{C}$ be a *continuous* function. For $z \in \mathbb{C} \setminus \gamma$ define the function F(z) by the Cauchy integral formula, that is let

$$F(z) := \frac{1}{2\pi i} \int_{\zeta \in \gamma} \frac{f(\zeta) d\zeta}{\zeta - z}$$

Prove that F(z) is a holomorphic function on $\mathbb{C} \setminus \gamma$, and prove that $\lim_{z\to\infty} F(z) = 0$.

Problem 4 (20 points). Continuing in the setup of the previous problem, and assuming that $f \in C^1(\gamma)$ (you may assume smooth if you wish),

(a) Prove that for any $\zeta_0 \in \gamma$ there exist limits

$$F^{-}(\zeta_0) := \lim_{z \in \Delta, z \to \zeta_0} F(z)$$
 and $F^{+}(\zeta_0) := \lim_{z \in \Delta', z \to \zeta_0} F(z)$

(b) Prove the Sokhotski-Plemelj formula, i.e. prove that the equality

$$F^+(\zeta_0) - F^-(\zeta_0) = \pm f(\zeta_0)$$

holds for any $\zeta_0 \in \gamma$ (the sign depends on your convention of how γ is oriented).

Hint: Express F as

$$F(z) = \frac{1}{2\pi i} \int_{\zeta \in \gamma} \frac{f(\zeta) - f(\zeta_0)}{\zeta - z} d\zeta + \frac{f(\zeta_0)}{2\pi i} \int_{\zeta \in \gamma} \frac{d\zeta}{\zeta - z} d\zeta$$