Spring 2017 MAT 536, Complex Analysis
 Instructor: Samuel Grushevsky
 Homework \#5, due in class Wed March 1

Problem 1. (Recall that) a function $f: \mathbb{C P}^{1} \rightarrow \mathbb{C}$ is said to be holomorphic at ∞, if the function $f(1 / z)$ is holomorphic at $z=0$.

If $P(z)$ and $Q(z)$ are two polynomials and $\operatorname{deg} P \leq \operatorname{deg} Q$, prove that the ratio $P(z) / Q(z)$ is holomorphic at ∞.
Problem 2. Prove that if a function f is meromorphic on all of $\mathbb{C P}^{1}$, then f is a rational function - that is, f is equal to the ratio of some two polynomials.

Problem 3. (Recall that Δ denotes the open unit disk)
Prove that the group of biholomorphic maps (holomorphic bijections, such that the inverse is also holomorphic) $\Delta \rightarrow \Delta$ is isomorphic to $\mathrm{PSL}_{2}(\mathbb{R})$. What is the group of biholomorphic maps $\mathbb{C} \rightarrow \mathbb{C}$?

Problem 4. (Recall that \mathbb{H} denotes the upper half-plane)
Suppose that $f: \mathbb{H} \rightarrow \Delta$ is a holomorphic function such that $f(n i)=$ 0 for any $n \in \mathbb{Z}_{>0}$. Prove that f is identically zero.
Problem 5. For each of the following functions, determine whether they have a removable singularity, a pole, or an essential singularity at $z=\infty$. If it is a removable singularity, what is the value at infinity (and if it's 0 , what is the order of the zero?). If it is a pole, what is the order of the pole?

$$
\begin{gathered}
\frac{z^{3}+1}{z^{5}+2} \\
\sinh z:=\frac{e^{z}-e^{-z}}{2} ; \\
\frac{e^{z}}{z^{3}} \\
e^{\frac{z-1}{z}}-e
\end{gathered}
$$

