Spring 2017 MAT 536, Complex Analysis Instructor: Samuel Grushevsky Homework #5, due in class Wed March 1

Problem 1. (Recall that) a function $f : \mathbb{CP}^1 \to \mathbb{C}$ is said to be holomorphic at ∞ , if the function f(1/z) is holomorphic at z = 0.

If P(z) and Q(z) are two polynomials and deg $P \leq \deg Q$, prove that the ratio P(z)/Q(z) is holomorphic at ∞ .

Problem 2. Prove that if a function f is *meromorphic* on all of \mathbb{CP}^1 , then f is a rational function — that is, f is equal to the ratio of some two polynomials.

Problem 3. (Recall that Δ denotes the open unit disk)

Prove that the group of biholomorphic maps (holomorphic bijections, such that the inverse is also holomorphic) $\Delta \to \Delta$ is isomorphic to $PSL_2(\mathbb{R})$. What is the group of biholomorphic maps $\mathbb{C} \to \mathbb{C}$?

Problem 4. (Recall that \mathbb{H} denotes the upper half-plane)

Suppose that $f : \mathbb{H} \to \Delta$ is a holomorphic function such that f(ni) = 0 for any $n \in \mathbb{Z}_{>0}$. Prove that f is identically zero.

Problem 5. For each of the following functions, determine whether they have a removable singularity, a pole, or an essential singularity at $z = \infty$. If it is a removable singularity, what is the value at infinity (and if it's 0, what is the order of the zero?). If it is a pole, what is the order of the pole?

$$\frac{z^{3} + 1}{z^{5} + 2};$$

sinh $z := \frac{e^{z} - e^{-z}}{2};$
 $\frac{e^{z}}{z^{3}};$
 $e^{\frac{z-1}{z}} - e.$