Spring 2017 MAT 536, Complex Analysis Instructor: Samuel Grushevsky Homework #9, due in class Wed April 12

Problem 1. Prove the Schwarz-Christoffel formula for the biholomorphism from a unit disk to the interior of a polygon with π -rational angles (*Ahflors gives a proof, but please try to a*) do it on your own, b) if you read Ahlfors, explain it better)

Problem 2. Let

 $D := \{ z : |\operatorname{Im} z| < \pi/2 \}$

be the horizontal strip in \mathbb{C} . Construct a holomorphic function $f \in \mathcal{O}(D)$, which extends continuously to the boundary ∂D , and such that $f|_{\partial D}$ is bounded, but $f|_D$ is not bounded.

Problem 3. Suppose a holomorphic function $f \in \mathcal{O}(\Delta)$ on the unit disk extends continuously to the boundary $\partial \Delta$. Suppose moreover that $f(\partial \Delta) \subset \partial \Delta$. Prove that f is a rational function.

Problem 4. For any $0 \le r < R \le \infty$ define the corresponding annulus to be

 $A_{r,R} := \{ z \in \mathbb{C} : r < |z| < R \}.$

For which r, R, r', R' are the annuli $A_{r,R}$ and $A_{r',R'}$ biholomorphic?

Problem 5. Suppose $f : \mathbb{H} \to \mathbb{H}$ is a one-to-one holomorphic map of the upper half-plane to itself, and suppose some purely imaginary $a \in \mathbb{H}$ is fixed by f, i.e. $\exists a \in i\mathbb{R}_{>0}$ such that f(a) = a. Prove that $|f'(a)| \leq 1$.