## MAT 118 Spring 2017 **Practice Final Exam**

1. [17 pts] Consider the following preference schedule for an election between candidates A, B, C:

| # voters: | 6 | 1 | 2 | 3 |
|-----------|---|---|---|---|
| 1st       | А | С | В | С |
| 2nd       | В | В | С | А |
| 3rd       | С | А | А | В |

- (a) Which candidate wins using the plurality method? A wins with 6 votes.
- (b) Use the Borda count method to determine the outcome. We assign 3 pts to each  $1^{st}$  place vote, 2 pts to  $2^{nd}$  place votes, and 1 pt to each  $3^{rd}$  place vote. Pts for A:  $3 \times 6 + 2 \times 3 + 1 \times 3 = 18 + 6 + 3 = 27$ . Pts for B:  $3 \times 2 + 2 \times 7 + 1 \times 3 = 6 + 14 + 3 = 23$ . Pts for C:  $3 \times 4 + 2 \times 2 + 1 \times 6 = 12 + 4 + 6 = 22$ . Thus A wins.
- (c) Use the plurality-with-elimination method to determine the outcome. First round: A has 6 1<sup>st</sup> place votes, B has 2, and C has 4. No one has a majority, so we eliminate B, the candidate with the fewest votes. In the column with B's 1<sup>st</sup> place votes, C is next, so these 2 votes go to C. Next round: A has 6, C has 6. We stop here with A and C tied.
- (d) Finally, apply the method of pairwise comparisons to determine the outcome.
  A v B: 9 voters prefer A over B, while the remaining 3 prefer B over A. So A gets 1 pt.
  A v C: this comparison is a tie. Each of A and C are awarded ½ a pt.
  B v C: 8 voters prefer B over C, while only 4 prefer C over B. So B gets 1 pt.
  In total, A has 1+½ pts, B has 1 pt, and C has ½ a pt. Thus A wins.

2. Use NNA starting at C to find a Hamilton circuit for the following, and give its total weight.



There are 2 answers: C, A, D, B, E, C with total weight 3 + 4 + 1 + 2 + 7 = 17; and C, D, B, E, A, C with total weight 3 + 1 + 2 + 6 + 3 = 15.

- 3. Consider the weighted voting system [19; 9, 8, 1, 1].
  - (a) List the sequential coalitions and underline the pivotal players. Then compute the Shapley-Shubik power distribution.

Here are the sequential coalitions:

| $\langle P_1, P_2, P_3, \underline{P}_4 \rangle$ | $\langle P_4, P_2, P_3, \underline{P}_1 \rangle$   | $\langle P_4, P_1, P_{3}, \underline{P}_2 \rangle$ | $\langle P_4, P_1, P_2, \underline{P}_3 \rangle$   |
|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| $\langle P_1, P_3, P_2, \underline{P}_4 \rangle$ | $\langle P_4, P_3, P_{2}, \underline{P}_1 \rangle$ | $\langle P_4, P_3, P_{1}, \underline{P}_2 \rangle$ | $\langle P_4, P_2, P_{1,} \underline{P}_3 \rangle$ |
| $\langle P_2, P_1, P_3, \underline{P}_4 \rangle$ | $\langle P_2, P_4, P_{3}, \underline{P}_1 \rangle$ | $\langle P_1, P_4, P_3, \underline{P}_2 \rangle$   | $\langle P_1, P_4, P_2, \underline{P}_3 \rangle$   |
| $\langle P_2, P_3, P_1, \underline{P}_4 \rangle$ | $\langle P_2, P_3, P_4, \underline{P}_1 \rangle$   | $\langle P_1, P_3, P_4, \underline{P}_2 \rangle$   | $\langle P_1, P_2, P_4, \underline{P}_3 \rangle$   |
| $\langle P_3, P_1, P_2, \underline{P}_4 \rangle$ | $\langle P_3, P_4, P_2, \underline{P}_1 \rangle$   | $\langle P_3, P_4, P_1, \underline{P}_2 \rangle$   | $\langle P_2, P_4, P_1, \underline{P}_3 \rangle$   |
| $\langle P_3, P_2, P_1, \underline{P}_4 \rangle$ | $\langle P_3, P_2, P_4, \underline{P}_1 \rangle$   | $\langle P_3, P_1, P_4, \underline{P}_2 \rangle$   | $\langle P_2, P_1, P_4, \underline{P}_3 \rangle$   |

Pivotal counts are SS<sub>1</sub> = SS<sub>2</sub> = SS<sub>3</sub> = SS<sub>4</sub> = 6. Since there are 4! = 24 sequential coalitions, we get  $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = 6/24 = \frac{1}{4}$ .

(b) List the winning coalitions and underline the critical players. Using this information compute the Banzhaf power distribution.

The only winning coalition is {  $\underline{P}_1$ ,  $\underline{P}_2$ ,  $\underline{P}_3$ ,  $\underline{P}_4$  } and all players are critical. Thus the critical counts are  $B_1 = B_2 = B_3 = B_4 = 1$ , the total is T = 4, and we get  $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \frac{1}{4}$ . *Remark*: As mentioned in class (and apparent from the solution above), the weighted voting system [19; 9, 8, 1, 1] is rather uninteresting. Consider the alternative problem using [10; 9, 8, 1]. Then

$$\langle P_1, \underline{P}_2, P_3 \rangle \langle P_1, \underline{P}_3, P_2 \rangle \langle P_2, \underline{P}_1, P_3 \rangle \langle P_2, P_3, \underline{P}_1 \rangle \langle P_3, \underline{P}_1, P_2 \rangle \langle P_3, P_2, \underline{P}_1 \rangle$$

so that  $SS_1 = 4$ ,  $SS_2 = SS_3 = 1$ . There are 3! = 6 sequential coalitions, so  $\sigma_1 = 4/6 = \%$ ,  $\sigma_2 = \sigma_3 = \%$ .

For Banzhaf power: we have the winning coalitions {  $\underline{P}_1$ ,  $\underline{P}_2$ ,  $\underline{P}_3$  }, {  $\underline{P}_1$ ,  $\underline{P}_2$  }, {  $\underline{P}_1$ ,  $\underline{P}_3$  } with critical players underlined. We find  $\underline{B}_1 = 3$ ,  $\underline{B}_2 = 1$ ,  $\underline{B}_3 = 1$ , and  $\underline{T} = 3 + 1 + 1 = 5$ . Thus  $\beta_1 = \frac{3}{2}$ ,  $\beta_2 = \beta_3 = \frac{3}{2}$ .

4. Consider the sequence 4, 9, 14, 19, ...

- (a) Is this sequence arithmetic, or geometric? The differences 9 - 4 = 5, 14 - 9 = 5, 19 - 14 = 5 are constant (d = 5), so it is arithmetic.
- (b) Compute the sum of the first 100 terms of the sequence. We use the arithmetic sum formula, which is given by:

$$P_0 + P_1 + \dots + P_{N-1} = (P_0 + P_{N-1})N/2$$

The first 100 terms are terms  $P_0$ ,  $P_1$ , ...,  $P_{99}$  so we will take N-1=99 and N=100. First,  $P_{99} = P_0 + 99d = 4 + 99(5) = 4 + 495 = 499$ . Then

$$P_0 + P_1 + ... + P_{99} = (P_0 + P_{99})(100)/2 = (4 + 499)(50) = 25150$$

5. Abe and Barb are dividing a \$9 sandwich which is ½ chicken parm and ½ vegetarian. Barb likes the chicken parm part 2 times as much as the vegetarian part, while Abe is vegetarian.



(a) Make a table that records how much money the different flavor halves of the sandwich are worth to Abe and Barb, in dollars.

|   | СР  | V   |
|---|-----|-----|
| А | \$0 | \$9 |
| В | \$6 | \$3 |

(b) Draw and describe a cut that Abe can make if he is acting as the divider in the divider-chooser method.

Either of the following is fine:



6. Draw 4 spanning trees of the following graph:



Here are 4 (there are many more):



7. An exponentially growing population sequence has initial  $P_0 = 2$  and R = 3. What is  $P_5$ ?

In general,  $P_N = R^N P_0$ . Thus  $P_5 = 3^5(2) = 486$ .

8. On the following graph, draw the degrees of each vertex, and then give an eulerization.



9. In a logistic growth model,  $r = \frac{1}{2}$ . If the carrying capacity is 100, is there a non-zero population amount that can be in equilibrium (i.e.  $p_0 = p_1 = p_2 = ...$ )?

As we saw in class, for equilibrium to occur, either the population is zero or  $p_0 = 1-1/r$ . Here  $r = \frac{1}{2}$ , so we would need  $p_0 = 1 - \frac{1}{\frac{1}{2}} = 1-2 = -1$ . However, a p-value is a percentage, and so must be a number between 0 and 1. So  $p_0 = -1$  is nonsense, and the answer is "NO"!

**Remark**: The derivation of  $p_0 = 1 - 1/r$  is very straightforward. The general logistic equation says

$$p_{N+1} = r(1 - p_N)p_N$$

and so if we are to have equilibrium  $(p_0 = p_1 = ...)$  then in particular we have

$$p_0 = p_1 = r(1 - p_0)p_0$$

Now, if  $p_0$  is nonzero, then dividing both sides by  $p_0$  yields  $1 = r(1 - p_0)$ , and solving for  $p_0$  yields the equation  $p_0 = 1 - 1/r$ , which is what was used above.