MAT 118 Spring 2017
 Practice Final Exam

1. [17 pts] Consider the following preference schedule for an election between candidates $\mathrm{A}, \mathrm{B}, \mathrm{C}$:

\# voters:	6	1	2	3
1st	A	C	B	C
2nd	B	B	C	A
3rd	C	A	A	B

(a) Which candidate wins using the plurality method? A wins with 6 votes.
(b) Use the Borda count method to determine the outcome.

We assign 3 pts to each $1^{\text {st }}$ place vote, 2 pts to $2^{\text {nd }}$ place votes, and 1 pt to each $3^{\text {rd }}$ place vote.
Pts for A: $3 \times 6+2 \times 3+1 \times 3=18+6+3=27$.
Pts for B: $3 \times 2+2 \times 7+1 \times 3=6+14+3=23$.
Pts for C: $3 \times 4+2 \times 2+1 \times 6=12+4+6=22$.
Thus A wins.
(c) Use the plurality-with-elimination method to determine the outcome.

First round: A has $61^{\text {st }}$ place votes, B has 2, and C has 4 . No one has a majority, so we eliminate B, the candidate with the fewest votes. In the column with B 's $1^{\text {st }}$ place votes, C is next, so these 2 votes go to C. Next round: A has $6, C$ has 6 . We stop here with A and C tied.
(d) Finally, apply the method of pairwise comparisons to determine the outcome.

A v B: 9 voters prefer A over B, while the remaining 3 prefer B over A. So A gets 1 pt.
$A \vee C$: this comparison is a tie. Each of A and C are awarded $1 / 2$ a pt.
B v C: 8 voters prefer B over C, while only 4 prefer C over B. So B gets 1 pt.
In total, A has $1+1 / 2$ pts, B has 1 pt , and C has $1 / 2 \mathrm{a} \mathrm{pt}$. Thus A wins.
2. Use NNA starting at C to find a Hamilton circuit for the following, and give its total weight.

There are 2 answers: C, A, D, B, E, C with total weight $3+4+1+2+7=17$; and $\mathrm{C}, \mathrm{D}, \mathrm{B}, \mathrm{E}, \mathrm{A}, \mathrm{C}$ with total weight $3+1+2+6+3=15$.
3. Consider the weighted voting system [19; 9, 8, 1, 1].
(a) List the sequential coalitions and underline the pivotal players. Then compute the Shapley-Shubik power distribution.

Here are the sequential coalitions:

$$
\begin{aligned}
& \left\langle\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{2}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{1}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{2}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{1}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{3}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{3}, \mathrm{P}_{1}, \underline{\mathrm{P}}_{2}\right\rangle\left\langle\mathrm{P}_{4}, \mathrm{P}_{2}, \mathrm{P}_{1}, \underline{\mathrm{P}}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{2}, \mathrm{P}_{1}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{2}, \mathrm{P}_{4}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{1}, \mathrm{P}_{4}, \mathrm{P}_{3}, \underline{\mathrm{P}}_{2}\right\rangle\left\langle\mathrm{P}_{1}, \mathrm{P}_{4}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{1}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{2}\right\rangle\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{3}, \mathrm{P}_{1}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{2}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle\left\langle\mathrm{P}_{2}, \mathrm{P}_{4}, \mathrm{P}_{1}, \underline{\mathrm{P}}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{3}, \mathrm{P}_{2}, \mathrm{P}_{1}, \underline{\mathrm{P}}_{4}\right\rangle\left\langle\mathrm{P}_{3}, \mathrm{P}_{2}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{1}\right\rangle\left\langle\mathrm{P}_{3}, \mathrm{P}_{1}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{2}\right\rangle\left\langle\mathrm{P}_{2}, \mathrm{P}_{1}, \mathrm{P}_{4}, \underline{\mathrm{P}}_{3}\right\rangle
\end{aligned}
$$

Pivotal counts are $\mathrm{SS}_{1}=\mathrm{SS}_{2}=\mathrm{SS}_{3}=\mathrm{SS}_{4}=6$. Since there are 4! $=24$ sequential coalitions, we get $\sigma_{1}=\sigma_{2}=\sigma_{3}=\sigma_{4}=6 / 24=1 / 4$.
(b) List the winning coalitions and underline the critical players. Using this information compute the Banzhaf power distribution.

The only winning coalition is $\left\{\underline{\mathrm{P}}_{1}, \underline{\mathrm{P}}_{2}, \underline{\mathrm{P}}_{3}, \underline{\mathrm{P}}_{4}\right\}$ and all players are critical.
Thus the critical counts are $\mathrm{B}_{1}=\mathrm{B}_{2}=\mathrm{B}_{3}=\mathrm{B}_{4}=1$, the total is $\mathrm{T}=4$, and we get $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=1 / 4$.

Remark: As mentioned in class (and apparent from the solution above), the weighted voting system $[19 ; 9,8,1,1]$ is rather uninteresting. Consider the alternative problem using $[10 ; 9,8,1]$. Then

$$
\begin{aligned}
& \left\langle\mathrm{P}_{1}, \underline{\mathrm{P}}_{2}, \mathrm{P}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{2}\right\rangle \\
& \left\langle\mathrm{P}_{2}, \underline{\mathrm{P}}_{1}, \mathrm{P}_{3}\right\rangle \\
& \left\langle\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{1}\right\rangle \\
& \left\langle\mathrm{P}_{3}, \mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle \\
& \left\langle\mathrm{P}_{3}, \mathrm{P}_{2}, \mathrm{P}_{1}\right\rangle
\end{aligned}
$$

so that $\mathrm{SS}_{1}=4, \mathrm{SS}_{2}=\mathrm{SS}_{3}=1$. There are $3!=6$ sequential coalitions, so $\sigma_{1}=4 / 6=2 / 3, \sigma_{2}=\sigma_{3}=1 / 6$.
For Banzhaf power: we have the winning coalitions $\left\{\underline{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right\},\left\{\underline{\mathrm{P}}_{1}, \underline{\mathrm{P}}_{2}\right\},\left\{\underline{\mathrm{P}}_{1}, \underline{\mathrm{P}}_{3}\right\}$ with critical players underlined. We find $B_{1}=3, B_{2}=1, B_{3}=1$, and $T=3+1+1=5$. Thus $\beta_{1}=3 / 5, \beta_{2}=\beta_{3}=1 / 5$.
4. Consider the sequence $4,9,14,19, \ldots$
(a) Is this sequence arithmetic, or geometric?

The differences $9-4=5,14-9=5,19-14=5$ are constant $(d=5)$, so it is arithmetic.
(b) Compute the sum of the first 100 terms of the sequence.

We use the arithmetic sum formula, which is given by:

$$
\mathrm{P}_{0}+\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{N}-1}=\left(\mathrm{P}_{0}+\mathrm{P}_{\mathrm{N}-1}\right) \mathrm{N} / 2
$$

The first 100 terms are terms $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{99}$ so we will take $\mathrm{N}-1=99$ and $\mathrm{N}=100$. First, $P_{99}=P_{0}+99 d=4+99(5)=4+495=499$. Then

$$
\mathrm{P}_{0}+\mathrm{P}_{1}+\ldots+\mathrm{P}_{99}=\left(\mathrm{P}_{0}+\mathrm{P}_{99}\right)(100) / 2=(4+499)(50)=25150 .
$$

5. Abe and Barb are dividing a $\$ 9$ sandwich which is $1 / 2$ chicken parm and $1 / 2$ vegetarian. Barb likes the chicken parm part 2 times as much as the vegetarian part, while Abe is vegetarian.

(a) Make a table that records how much money the different flavor halves of the sandwich are worth to Abe and Barb, in dollars.

	CP	V
A	$\$ 0$	$\$ 9$
B	$\$ 6$	$\$ 3$

(b) Draw and describe a cut that Abe can make if he is acting as the divider in the divider-chooser method.

Either of the following is fine:

6. Draw 4 spanning trees of the following graph:

Here are 4 (there are many more):

7. An exponentially growing population sequence has initial $P_{0}=2$ and $R=3$. What is P_{5} ?

In general, $\mathrm{P}_{\mathrm{N}}=\mathrm{R}^{\mathrm{N}} \mathrm{P}_{0}$. Thus $\mathrm{P}_{5}=3^{5}(2)=486$.
8. On the following graph, draw the degrees of each vertex, and then give an eulerization.

9. In a logistic growth model, $r=1 / 2$. If the carrying capacity is 100 , is there a non-zero population amount that can be in equilibrium (i.e. $p_{0}=p_{1}=p_{2}=\ldots$)?

As we saw in class, for equilibrium to occur, either the population is zero or $p_{0}=1-1 / r$. Here $r=1 / 2$, so we would need $p_{0}=1-1 /(1 / 2)=1-2=-1$. However, a p-value is a percentage, and so must be a number between 0 and 1 . So $\mathrm{p}_{0}=-1$ is nonsense, and the answer is " NO "!

Remark: The derivation of $p_{0}=1-1 / r$ is very straightforward. The general logistic equation says

$$
p_{N+1}=r\left(1-p_{N}\right) p_{N}
$$

and so if we are to have equilibrium $\left(\mathrm{p}_{0}=\mathrm{p}_{1}=\ldots.\right)$ then in particular we have

$$
\mathrm{p}_{0}=\mathrm{p}_{1}=\mathrm{r}\left(1-\mathrm{p}_{0}\right) \mathrm{p}_{0}
$$

Now, if p_{0} is nonzero, then dividing both sides by p_{0} yields $1=r\left(1-p_{0}\right)$, and solving for p_{0} yields the equation $p_{0}=1-1 / r$, which is what was used above.

