Math 331, Fall 2002: Problems 11-12

NOTE: Each exercise is worth 10 points and can be turned in at any time before its "expiration date". At the end of the semester, I will expect you to have turned in at least 2/5 of the exercises assigned. If you do more, I will pick your best grades. If you do less, the missing grades will be counted as zeros. Altogether, these will count the same as one project.
11. (expires 10/14) Following Section 4 of the notes, prove that if we describe the circle of center (a, b) and radius r using the parameters (a, b, k), with $k=a^{2}+b^{2}-r^{2}$, rather than the more natural parameters (a, b, r), then the error function $H(a, b, k)=$ $E\left(a, b, \sqrt{a^{2}+b^{2}-k}\right)$ is quadratic in a, b and k. What does this imply about the number of critical points?
12. (expires 10/14) With reference to Problem \#11, show that, for $r>0$, the transformation $(a, b, r) \mapsto(a, b, k)$ is a valid change of variables, that is, it is one-to-one. This should help you prove that $E(a, b, r)$ has only one "physical" critical point, which is a minimum, and is mapped, through the transformation, into the unique critical point of $H(a, b, k)$.

