Math 331, Fall 2002: Problems 17-20

- 17. (expires 10/28) Consider the differential equation $\dot{\mathbf{z}}(t) = \mathbf{F}(\mathbf{z}(t))$, where the vector $\mathbf{z}(t) = (x(t), y(t))$ and the field $\mathbf{F}(x, y) = (-y, x y)$. Plot a few solutions. What happens to them when $t \to +\infty$? Give a "Maple-proof" that this is a general fact for every solution. [A "Maple-proof" is an argument that is rigorous once we accept Maple results as incontrovertibly true.]
- 18. (*expires 10/28*) (No Maple.) For the equation $\dot{\mathbf{z}} = \mathbf{F}(\mathbf{z}), \mathbf{z} = (x, y)$, with the vector field

$$\mathbf{F}(x,y) = \left\langle -x(x^4 + y^4) - y, \ x - y(x^4 + y^4) \right\rangle,$$

prove that the origin is an attractor in the future, i.e., every solution verifies

$$\lim_{t \to +\infty} \mathbf{z}(t) = 0$$

[You can ask around how to do this, but then you have to show clearly that you have understood it.]

19. (*expires* 10/28) For the system of differential equations of prob. #23,

$$\begin{cases} \dot{x} = x^2 + y, \\ \dot{y} = x(y^2 - 1), \end{cases}$$

find the eigenvalues and eigenvectors of the Jacobian at the fixed points. [This is a give-away if you have done #16.]

20. (expires 10/28) Consider the equations of the glider with no drag term (R = 0). Use dsolve, type=numeric to solve them numerically with initial conditions $\theta(0) = 0$, v(0) = 0.8. Then solve exactly the linearized system around the fixed point $(\theta_0, v_0) = (0, 1)$, with the same initial conditions. Graph the two functions for $0 \le t \le 5$, and give a good estimate of their maximum difference. What happens if we take a larger *t*-range?